THE CARBONIFEROUS FLORA OF THE CARNIC ALPS: STATE OF THE ART

LA FLORA CARBONIFERA DELLE ALPI CARNICHE: LO STATO DELL’ARTE

Evelyn Kustatscher
Hendrik Nowak
Stanislav Opluštil
Josef Pšenička
Luca Simonetto

Riassunto breve - Questo lavoro illustra lo stato dell’arte relativo alle località fossili, al loro inquadramento stratigrafico e a una visione generale della composizione della flora del Carbonifero delle Alpi Carniche. I fossili vegetali provengono per la maggior parte da un certo numero di affioramenti distinti (circa 30), all’interno di un range temporale che copre l’intero Pennsylvaniano. Un ridotto numero di esemplari e alcune microflore provengono dal Carbonifero inferiore (Mississippiano, Formazione del Hochwipfel). Le singole località da cui provengono i reperti conservati al Museo Friulano di Storia Naturale, sono state raggruppate in base alla loro posizione stratigrafica così come indicata in bibliografia.

Considerando che l’intervallo di tempo racchiuso nelle singole unità fossilifere del Pennsylvaniano è abbastanza ridotto, e che le varie formazioni riflettono soprattutto un succedersi di transgressione/regressione del livello del mare, si presume che le piante potessero crescere in ambienti diversi ma in un arco di tempo quasi coevo per ognuno dei gruppi di località fossilifere individuati.

Parole chiave: Carbonifero, Mississippiano, Pennsylvaniano, Diversità, Bacino di Pramollo, Alpi Carniche.

Abstract - A state-of-the-art overview is given on the fossiliferous localities of Carboniferous floras of the Carnic Alps, their stratigraphic background and a general picture of the flora. The majority of fossil plant assemblages come from several distinct fossiliferous horizons (about 30), covering the upper part of Pennsylvanian. A smaller number of specimens and some microfloral assemblages come from the lower Carboniferous (Mississippian, Hochwipfel Formation). The localities from which the specimens stored in the Museo Friulano di Storia Naturale come, have been grouped according to their stratigraphic position as indicated in the bibliography.

Due to the fact that the time constraints within the Pennsylvanian fossiliferous units are relatively narrow, and that the various formations reflect, for most part, sea level transgressions and regressions, we posit that the plants likely grew in different, but roughly coeval, habitats for each of the fossiliferous site groups identified.

Key words: Carboniferous, Mississippian, Pennsylvanian, Diversity, Pramollo Basin, Carnic Alps.

Introduction

The Carboniferous floras of the Carnic Alps belong to two different time intervals. The flora from the Rifugio Marinelli (Marinelli Hütte; e.g., Stur 1871; Frech 1894; Vinassa de Regny 1906a, 1906b, 1906c; Gortani 1905, 1906, 1910; Krause 1928; Francavilla 1966; Van Amerom et al. 1984) comes from the Hochwipfel Formation of middle Visean age (Van Amerom et al. 1984). This flora (e.g., Stur 1871; Frech 1894; Vinassa de Regny 1906a, 1906b, 1906c; Gortani 1905, 1906, 1910; Krause 1928; Francavilla 1966; Van Amerom et al. 1984) is characterized by lycophytes (Lepidodendron, Stigmaria), sphenophytes (Calamites, Sphenophyllum), fronds of ferns or seed ferns (Neurodopteris, Rhodocopteris, Sphenopteris, Sphenopteridium, Cardioperidium) and dispersed seeds (Trigonocarpus, ?Holcospermum).

In their recent volume dedicated to the Hoch-wipfel Formation, Kabon & Schönlaub (2019) report for the whole succession (more then 1200 m thick), a high number of species (about 40), referable to the genera Archeocalamites, Pothocites, Calamites, Sphenophyllum, Sphenophylostachis, Lepidodendropsis, Lepidodendron, Bothrodendron, Stigmaria, Sphenopteridium, Archeopteridium, Cardioperidium, Fryopsis, Adianites, Triphyllopteris, Rhodea, Megaphyton, Sphenopteridium, Calathiops, Zeilleria, to which are added the seeds of Trigonocarpus, Holcospermum e Nudospermum (specifying that “seeds are rare in the formation ...”).

More emblematic for the Carnic Alps are the excellent outcrops of Pennsylvanian age, which are often very rich in fossils. Thus, it is not surprising that these fossiliferous successions have attracted the attention of geologists and palaeontologists since the middle of the 19th century. Besides the diverse fauna preserved in
marine carbonates and siliciclastics, terrestrial deposits yielded exceptional plant assemblages.

The Carboniferous macrofloras of the Carnic Alps have been studied for more than 240 years. One of the oldest references is from 1783, when Hohenwart (1783) indicated in the context of a botanical excursion that plant fossils were already known from the area of the Stanglalpe at that time. Boué (1835) was among the first to describe a systematic collection and study of plant fossils from the area, emphasizing the diversity and richness of the fossil flora. Several plant genera were identified, including Stigmaria, Lepidodendron, Asterophyllites, Calamites and various types of ferns. Also Sternberg (1820-1838) figured some plants from the Stangalpe, such as Neuropteris alpina (Sternberg 1820-1838: p. 76, fig. 2, pl. 22; Unger 1840). Further reports of plant fossils, mostly indicated as "Farnkräuter" (fern remains), were made from Watschig near Hermagor (Morlot 1850), St. Oswalder Alpe (Anonym 1851) and near Ofenalpe (Höfer 1869; Unger 1869). In the latter paper, 19 different species were already indicated. Among the most prominent geologists/paleontologists reporting on plant fossils in the 19th century are Stur (1856, 1868, 1871, 1886; 50 species), Stache (1874), Zwanzinger (1876; 65 species), Tommasi (1889), Bozzi (1890; 14 species), Schellwien (1892), Frech (1894) and Geyer (1897).

Fossil plants were discovered in the area of Palon del Pizzul, north of Paularo village, at the end of the 19th century, whereas the rich deposits of plant fossils around Cason di Lanza and Monte Pizzul were not described before the beginning of the 20th century (e.g., Vinassa de Regny & Gortani 1905; Gortani 1906, 1912, 1905; Vinassa de Regny 1912, 1905). Studies on Carboniferous plant fossils proceeded almost exclusively on the Austrian side after WWI (e.g., Reichardt 1933; Heritsch et al. 1933; Kielhauser 1937; Jongmans 1938; Berger 1960; Riehl-Herwisch 1962; Remy 1969; Kaiser 1971; Fenninger & Schönlau 1972; Francavilla 1974; Thiedig & Kluszynski 1977; Van Amerom et al. 1976; Tenchov 1978, 1980).

As seen above, the number of recognized plant taxa changed substantially over the course of the 19th century, from 19 species according to Höfer (1869) to 50 and 65 species mentioned respectively by Stur (1886) and Zwanzinger (1876).

Fig. 2 – The studied area with the positions of the cited localities in the Carnic Alps, where Carboniferous floras have been found.

- L’area esaminata con la posizione delle località citate dalle quali provengono le flore del Carbonifero delle Alpi Carniche.

1 Rifugio Marinelli
2 Zollnersee
3 Straniger Alm 2
4 Straniger Alm 3
5 Straniger Alm 4
6 Straniger Alm 1
7 Casera Cordin Grande 1, 2
8 Schelterkofel 2
9 Passo Cason di Lanza/Lanzenboden (Rio del Museo)
10 Rio dai Amplis
11 Schwandgraben (Hüttengraben)
12 Rudningsattel
13 Tomritsch
14 Madritschenkopf
15 Schlanitzer Almweg
16 Nassfeldsattel
17 Watschiger Alm
18 Monte Carnizza
19 Gugga 1-3, 5
20 Garnitzenberg 1-3, α, β
21 Frana Vecchia, Casera Auernig
22 Rio della Pioggia
23 Ofenalm West
24 Casera For/Ofenalm
25 Rio della Faglia
26 Rio Bruca
27 Monte Corona/Krone
28 “Contatto” Corrado Rosenfeld
29 Monte Corona towards Monte Cerchio
Fig. 3 - Stratigraphic positions of the cited localities in the Carnic Alps, where Carboniferous floras were found.
- Posizione stratigrafica delle località citate dalle quali provengono le flore del Carbonifero delle Alpi Carniche.

2006, 2007) described 92 taxa from these collections. The Carboniferous flora of the Carnic Alps became a famous reference flora, although these studies were mostly focused on plant assemblages from Austrian fossiliferous localities, whereas the plant assemblages from the Italian side are still poorly known.

A first detailed study of the plant assemblages of the Italian side and a preliminary revision of the historical plant assemblages from the Austrian side has recently been carried out within the Interreg VA Italy-Austria-Project ITAT2010 “GeoTrAC: Grenzüberschreitender GeoPark der Karnischen Alpen” - “GeoTrAC: Geoparco Transfrontaliero delle Alpi Carniche”, giving for the first time an overview on the entire flora of the Carnic Alps (Opluštil et al. submitted).

Stratigraphy, materials and methods

Carboniferous deposits of the Carnic Alps have a noteworthy stratigraphic and palentological significance, and belong either to the Pre-Variscan sequence...
The marine environmental conditions that characterized the Upper Devonian (Pal Grande Formation and Zollner Formation) persisted in the lower Carboniferous, up to the Visean. At place, due to temporary subaerial exposures within the late Famennian and the Tournasian some karstic phenomena developed (Schönlaub et al. 1985; Pondrelli et al. 2015; Corradini et al. 2017) that give rise to hard grounds (Plotta Formation).

During the Visean, faults already activated in the latest Devonian due to rifting caused some sectors of the Carnic basin to subside, while other areas remain exposed. Several levels of breccias and conglomerates slide down in the deepest basins, forming a thick turbiditic sequence (Hochwipfel Fm), overlain by basic volcanic eruptive (Dimon Fm), related to the crustal thinning due to rifting. These conditions continue up to the Bashkirian (late Carboniferous), when the Variscan orogenic cycle begins in the Carnic area, marking the end of the deposition of the Pre-Variscan Sequence.

The uplift of the Paleocarnic chain (Bashkirian-Moscovian) generates an erosional depositional sedimentary gap. In some places (Forni Avoltri, Pramollo and Tarvisio sectors) the gap is earlier interrupted during the latest Moscovian, because of subsidence related a to strike-slip tectonic system. The Permo-Carboniferous Sequence unconformably overlies the Pre-Variscan Sequence. It is mainly constituted by alternances of fluvio-deltaic and marine deposits, regulated by frequent eustatic variations due to Permo-Carboniferous glacialism. The sequence starts with the Bombaso Fm., resulting from the erosion of the Paleocarnic Chain. This unit is overlain by the Pramollo Group, made up of 5 formations (the Meledis Fm, the Pizzul Fm, the Corona Fm, the Auernig Fm and the Carnizza Fm), characterized by frequent transgressive-regressive cycles, alternating fluvio-deltaic clastic sediments and calcareous shallow water deposits.

In the Lower Permian, calcareous facies are dominant; the three formations (Lower Pseudoschwagerina Fm, Val Dolce Formation. and Upper Pseudoschwagerina Fm), grouped in the Rattendorf Group, indicate a general transgression with more stable marine conditions. The overlying Trogkofel Group ends the Permo-Carboniferous Sequence of the Carnic Alps.

The upper Carboniferous successions yielding plant fossils in the Carnic Alps crop out in the Pramollo (or Pramollo-Nassfeld, Fig. 1) Basin (Venturini 1990). Several important localities (e.g., Passo Pramollo, Cason di Lanza, Monte Corona, Monte Carnizza; Fig. 1)
yielded rich plant assemblages from the Pennsylvanian Pramollo Group (also known as Auernig Group or Auernig Formation; Fig. 3). The latter is up to 1200 m thick and composed of the Meledis, Pizzul, Corona, Auernig and Carnizza formations (SELLI 1963). The Meledis, Corona and Carnizza formations are dominated by clastic sediments, whereas the Pizzul and Auernig formations are composed of clastic sedimentary rocks interbedded with thick fossiliferous limestone horizons (McCANN 2008). The Meledis Formation and the lower part of the Pizzul Formation are considered Kasimovian in age, the other formations were assigned to the Gzhelian Stage (SCHÖNLAUB & FORKE 2007; McCANN 2008). The age attribution of the formations is mainly based on fusulinids (e.g., KAHLER 1983, 1985, 1986, 1989; KRÄNER & DAVYDOV 1998; DAVYDOV & KRÄNER 1999; FORKE & SÁMANKASSOU 2000; PASINI 1963; VACHARD & KRÄNER 2001). Plant remains are preserved in every formation of the Pramollo Group. Historically, the most abundant, best preserved and most diverse plant assemblages and also some coal-rich levels of up to 30 cm thickness came from the fine sandstones and pelitic levels of the Corona Formation (SELLI 1963; MASSARI et al. 1991). Therein, sphenophyte trunks are preserved in situ (with a diameter of up to 20 cm; SELL 1963). Plant assemblages were also collected also from the other formations of the Pramollo Group and probably from the Bombaso Formation (Rio della Pioggia, Tomritsch).

The preservation of the plant remains varies strongly between different localities. Most are compressions or impressions (adpressions) with varying morphological details. The well-preserved plant compressions of some localities show clear pinnule veins and/or details of the reproductive organs. Other fragments have only a poorly preserved morphology. Cuticles and in situ spores/pollen could be present in some of the better-preserved plant compressions, although this has not been tested so far.

Most of the plant fossils from the Italian Carnic Alps are stored in the Museo Friuliano di Storia Naturale in Udine (MFSN, about 2,500 specimens). Most samples have been recovered during systematic excavations in the last few decades by employees of the museum and local collectors. Plant remains were collected from numerous localities, such as Casera Auernig, Casera Cordin Grande, Cason di Lanza, Monte Carnizza, Monte Corona, Passo Pramollo, Pontebba, Rio Bombaso, Rio Brusa, Rio Cordin, Rio dai Amplis, Rio degli Uccelli (Vogelbach), Rio del Museo, Rio della Faglia and Rio della Pioggia. Some specimens coming from some of the same localities are also stored in the Museo Geologico della Carnia (Ampezzo, Udine, MGC).

The historical collections from the Carnic Alps are deposited mainly at the Naturhistorisches Museum Wien, and in the Geology and Paleontology section of the Museum of Natural History in Florence and the Landesmuseum für Kärnten, Klagenfurt. Some specimens (mainly collected by Michele Gortani) are also stored in the Museo Geologico Cappellini in Bologna.

The principal localities where most of the material came from are Garnitzenberg 1-3, Garnitzenberg Südost α and β (= Monte Carnizza), Gugga 1-3, Hüttengraben (= Schwandgraben), Kronalpe, Krone (= both Monte Corona), Madritschenkopf (= Monte Madrizze), Nassfeldsattel (= Passo Pramollo), Ofenalm (= Casera For), Lanzenboden (Piani di Lanza), Rudnigsattel Süd 3-4, Rudnigsattel Nord, Schlanitzer Almweg, Schulter, Straniger Alm 1-3, Tomritsch 1-2, Watschiger Alm, Treßdorfer Alm and Zollnersee 2-3 (FRITZ et al. 1990; Figs 2, 3).

Plant remains

The plant remains from the Italian side of the border are currently being restudied. In the interim, the com-
position of the Upper Carboniferous flora of the Carnic Alps can only be assessed based on studies carried out since the 1980’s in Carinthia. There, the floras have been grouped stratigraphically (e.g., Fritz & Krainer 2006, 2007; Fritz et al. 1990). Starting with the oldest post-variscan flora, the Bombaso Formation crops out at the Tomritsch 1 and 2, and putatively Rio della Pioggia localities. The localities Straniger Alm 1-4, Zollnersee 2-3, Cason di Lanza, Watschiger Alm, Rudnigsattel, Rio del Museo (Fig. 3), Rio della Faglia and “Rio Bruca” pertain to the Meledis Formation. The Rio dai Amplis and the “Frana Vecchia” (Fig. 5) localities yielded plant remains coming both from the Pizzul Formation and/or from the Meledis Formation. The fossiliferous horizons, Garnitzenberg α and β, and Casera Cordin Grande 1-2 are known for the Pizzul Formation. Also the specimens from Casera For could come from the Pizzul Formation, but this assignment is uncertain due to the high number of small outcrops in the area, belonging to different formations.

The Corona Formation yielded plant fossils at the Ofenalm, Nassfeldsattel, Madritschenkopf, and Krone/ Monte Corona. The samples labelled as “Contatto Corrado Rosenfeld” and “Monte Corona, presso il Contatto, verso il M. Cerchio” could belong to the Corona or the Pizzul formations since both formations are cropping out in close proximity due to faults. Gugga 1 and 2 lay at the boundary between the Corona

Fig. 8 - Annularia carinata and Polymorphopteris from the Late Carboniferous of Mt Corona (Pramollo Pass; MFSN gp 985).

- Annularia carinata and Polymorphopteris dal Carbonifero superiore del Monte Corona (Passo Pramollo; MFSN gp 985).
and the Auernig formations, whereas Gugga 3 and Garnitzenberg 1 are assigned respectively to the lower and upper part of the Auernig Formation. It is difficult to assign the samples from the “Monte Carnizza” site to any formation, since the area is subjected to strong tectonic disruptions. The most likely assignment is to the Auernig Formation, although this interpretation is far from certain. The Carnizza Formation is the youngest Carboniferous formation yielding plant remains, mostly in the outcrops of Garnitzenberg 2 and 3, Hüttengraben and Schulterkofel. The specimens from Creta di Lanza probably belong to the Carnizza Formation. In any case they come from the upper part of the Pramollo Group. Additional localities (e.g., Rio degli Uccelli, Passo Pramollo, Pontebba, Rio Bombaso) are not localized geographically well enough for the assignment to any specific stratigraphic level.

The strictly clastic formations (Meledis, Corona and Carnizza) are much more fossiliferous than those characterized by an alternation of siliciclastic and marine beds (Pizzul and Auernig formations). Although plant remains are abundant throughout the stratigraphic succession of the Pramollo Group, the relative abundance and richness of specific taxa changes through time.

The Bombaso Formation has only few fossiliferous layers, with few taxa of sphenophytes (Annularia sphenophylloides, Calamites cisti, Sphenophyllum oblongifolium), lycophytes (Cyperites bicarinatus, Leptostrobophyllum lanceolatum, Stigmaria ficoide, Syringodendron sp.) and ferns or seed ferns (Callipteris pteridium, Linopteris neuropterioides, Pecopteris candelacea, P. polymorpha, P. schlotheimii and P. unita).

Lycophytes are rare in the plant assemblages of the Carnic Alps. Nonetheless, they are represented by a
surprising diversity (9 taxa), with isolated sporophylls (*Lepidostrobophyllum triangulare*, *L. lanceolatum*), fragments of strobili (*Sigillariostrobus* sp.), leaves (*Cyperites bicarinatus*), root fragments (*Knorria* sp., *Stigmaria licoides*) and different types of stem fragments (*Syringodendron* sp., *Sigillaria brardii*, *Asolanus camptotaenia*). *Cyperites bicarinatus* has been found in most fossiliferous localities and is missing only from the Pizzul Formation. Lycophytes are rare in the Pizzul Formation (*Syringodendron*), the Auernig Formation (*Cyperites*), the two formations that show a marine influence in the succession.

The sphenophytes are much more abundant and diverse and are represented by both arborescent and herbaceous plants (21 taxa in total). Both foliage, stems and fertile organs of the arborescent sphenophytes are preserved. With four different species, the genus *Annularia* (Figs. 8 and 11) is the most diverse among adpressions, including both isolated whors and leafy shoots bearing several whorls of leaves (*Annularia radiata*, *A. sphenophylloides*, *A. stellata*, *A. spicata*). On the other hand, *Asterophyllites equisetiformis* is very rare. *Calamites cistii*, *C. cruciatus*, *C. suckowii*, *C. (Diplocalamites) sp.* and *Mesocalamites schutzeiformis* are mostly fragments of large single stems preserved as pith casts in sandy siltstone, sometimes with visible branch scars, more rarely as impressions of the external surface with leaf scars. Cone fragments with articulated and vertically striated axes and perpendicularly attached bracts are rare but relatively diverse with three different taxa (*Calamostachys tuberculata*, *Macrostachya infundibuliformis*, *Palaeostachya* sp.). Remains of sphenophyte roots (*Radicites* sp.) are restricted to the lower part of the succession.

Fig. 11- Branch of a sphenophyte (*Annularia sphenophylloides*) from the Corona Formation (Upper Carboniferous), Mt Corona (Pramollo Pass; MFSN gp 1121).

- Ramo di un equiseto arboreo (*Annularia sphenophylloides*) dalla Formazione del Monte Corona (Carbonifero Superiore) Monte Corona (Passo Pramollo; MFSN gp 1121).
The herbaceous horsetails are predominantly represented by isolated leaf whorls or parts of leafy axes of Sphenophyllum species (S. alatifolium, S. angustifolium, S. fimbriatum, S. incisa, S. longifolium, S. oblongifolium, S. thonii var. minor). In this case as well, the siliciclastic formations are characterized by a considerably higher diversity and abundance in sphenophyte remains. In the Auernig Formation, the sphenophyte remains are restricted to stems (Calamites (Diplocalamites) sp.) and corresponding whorls of micophylls (Annularia sphenophylloides, A. stellata). The stratigraphically older Pizzul Formation, on the other hand, yielded stems (Mesocalamites schutzeiformis) and reproductive organs (Palaeostachya sp.) of arboreal sphenophytes but also axis fragments of herbaceous sphenophytes (Sphenophyllum fimbriatum, S. oblongifolium).

The group of the Pteridophylla is the most diverse in the flora, containing putative fern, seed fern and even putative cycadophyte taxa. The ferns are represented by two different orders, the Marattiales and the Filicales. The Marattiales are the most diverse and abundant. The most diverse genus is Pecopteris with 11 different species or varieties (P. acuta, P. aff. miltonii, P. arborescens, P. candelleana, P. feminaeformis, P. hemitelioides, P. oreopteridia, P. polymorpha v. major, P. polymorpha v. minor, P. schotheimii, P. unita). They are commonly preserved as penultimate pinna fragments with several ultimate pinnae and pinnules. In most cases, only the sterile fronds are present, fertile fronds occur rarely. The other genera of Marattiales are much rarer with only up to three different species, such as the fertile genus Asterotheca (A. sternbergii, A. schotheimii, A. sternbergii) and the sterile genus Acitheca (A. polymorpha). Also assignable to the Marattiales are the different types of Aplebia (A. adnascens, A. elongata, A. sp.). Sphenopteris is a genus of fern-like leaves with generally uncertain botanical affinity. Three taxa of sterile fragments of penultimate pinnae have been identified in the flora (S. nummularia, S. rutaefolia, Sphenopteris sp. div.).

Seed ferns are abundant in the flora and represented by two different orders. The Callistophytales include the two leaf genera Dicksoniites (represented by D. plukenetii) and Pseudomariopteris (with the species P. busquetii). The more abundant and diverse order are the Medullosales, with the typical late Paleozoic leaf genera Alethopteris (A. ambigua, A. bohemica), Neuropteris (N. auriculata, N. cordata, N. ovata, N. ovata f. ovata), Odontopteris (O. alpine, O. brardii, O. minor), Callipteridium (C. gigas, C. pteridium) and Linopteris (Linopteris neuropteroides, L. neuropteroides major). The seeds Pachytesa gigantea and Trigonocarpus sp. also belong to the Medullosales. The medullosalean family Cyclopteridaceae is represented by Cyclopteris fimbriatum and Cyclopteris sp.

The last group documented from the flora is the order Cordaitanthales. It is represented by leaves (Cordaites principalis), reproductive organs (Cordaitanthus sp.) and seeds (Samaropsis fluviatilis).

Of unknown botanical affinity is Kahleria carinthiaca, which was described for the first time from the Carboniferous of the Carnic Alps, as well as the seeds assigned to Carpolithes sp., the reproductive organ Ptychocarpus unitus and the leaf genus Taeniopteris, present with two species (Taeniopteris jejunata, T. multineris).

Discussion

The so far most complete overview of the Carboniferous (Pennsylvanian) flora of the Carnic Alps reported 92 taxa from the Pramollo Group (Fritz 1990; Fritz & Boersma 1990). However, this number also includes various disarticulated organs of the same plants (foliage, stem, roots, decorticated sigillarian stem Syringodendron) or sterile and fertile equivalents of the same plant in the case of ferns (e.g., Pecopteris unita and Ptychocarpus unitus). For this reason, these 92 species do not represent the biological plant diversity of the Pramollo Group. Moreover, modern stratigraphy and taxonomy of Pennsylvanian floras from Europe developed progressively over the last century. This is why a systematical revision of the flora is currently being carried out.

The overview of the historical collections was based on Fritz et al. (1990), where 78 taxa are plotted against 19 different sampling levels arranged in in their stratigraphic position within the Pramollo Group. These 78 taxa represent about 48 whole-plant species (12 sphenophyte, 5 lycopsid, 14 fern, 16 pteridosperm and 2 cordaitalean taxa), which are more reflective of biological diversity.

Concerning diversity in individual formations of the Pramollo Group, substantial differences have been observed between the exclusively clastic formations Meledis, Corona, Carnizza and the marine-influenced Auernig and Pizzul formations. The sediments of the Bombaso Formation are probably too coarse to yield well-preserved plant remains. The Carnizza Formation, on the other hand, yielded the most diverse plant assemblages.

Although the examined material is relatively rich and allows for an estimation of the diversity of major plant groups, the analysis of relative abundances of plant groups is problematic. This is because the collection material represents a selection of fossils found in debris only, and does not necessarily represent the original proportions of populations of major plant groups in the vegetation cover, with the exception of the excavations by the Museo Friulano di Storia Naturale in Udine (Fig.
The plant diversity of the Carboniferous (Pennsylvanian) flora of the Carnic Alps is quite high (48 whole-plant species) and is comparable in diversity and species composition to coeval floras from Spain (Wagner & Álvarez-Vázquez 2010), the Czech Republic (Opluštíl & Cleal 2007) and the Karawanks (Pšenička et al. 2015). This indicates that the Carnic Alps flora is a potentially important stratigraphic pillar for the southern part of Europe. The fact that the plant-bearing succession of the up to 1200 m thick Pramollo Group is intercalated with marine bands (mostly limestones) provides more detailed biostratigraphic constraints and enables the correlation of biostratigraphic zones between marine and terrestrial environments (Vai & Venturini 1997). This, however, will require a more detailed study of the Carboniferous floras and faunas of the Carnic Alps.

Manuscript received on 13.IX.2019, accepted on 11.X.2019.

Acknowledgements

This publication has been published within the framework of the Interreg Italia-Austria 2014-2020 project “GeoTrAC - Transborder Geopark of the Carnic Alps”.

Thanks to Carlo Corradini for his useful contribution.

References

DAVYDOV, V., & K. KRAINER. 1999. Fusulinid Assemblages and Facies of the Bombaso Fm. and basal Meledis Fm. (Moscovian-Kasimovian) in the Central Carnic Alps (Austria/Italy). Facies 40: 157-96.
Die Fragmente zur mineralogisch und botanischen Geschichte Steyermarks und Kärntens 1: 19-35.

