REDESCRIPTION OF AGONOPTERIX SELINI (HEINEMANN, 1870) WITH DESCRIPTION OF AGONOPTERIX LESSINI SP. N. AND AGONOPTERIX PARASELINI SP. N. (LEPIDOPTERA, GLECHIOIDEA)

Peter Buchner

Abstract - Agonopterix selini (Heinemann, 1870) is redescribed and a neotype is designated for it, Agonopterix lessini sp. n. and Agonopterix paraselini sp. n. are described. The type specimen of A. selini, in fact, is lost. Hannemann (1953) pointed out the globose gnathos as A. selini’s diagnostic feature of male genitalia. But barcode and the inclusion of further characteristics of male and female genitalia in his description have shown that the supposed one species “selini” conceals a total of three species. From Heinemann’s description of larva in combination with food-plant and type locality it has been possible to clarify which of the three species is the true Agonopterix selini (Heinemann, 1870). It is widespread throughout Europe, and the only one to occur in Scandinavia. Agonopterix lessini sp. nov. is restricted to Southern Europe, extending to Turkey. At the type locality, Monti Lessini (Italy), it seems to be the only one of the three species. Agonopterix paraselini sp. n. is predominantly found in Central Europe and the only one which is found around Vienna. Most of the specimens stored under A. selini in NHMV belong to this species, and this is the species depicted in Hannemann (1953) and Hannemann (1995) as A. selini.

Key words: Gelechioidea, Depressariinae, Depressaria, Agonopterix, New species, DNA barcoding, Neotype.

Introduction

Already before starting to work on the volume “Microlepidoptera of Europe [ME]: Depressariinae”, several species of Agonopterix had been reared by this author, including one from Peucedanum cervaria (Austria, Mödling near Vienna) and one from P. oreoselinum (Austria, Hainburger Berge). Based both on food-plants and external appearance, the expected species were A. selini and/or A. parilella, which can not be identified with certainty based on external characters only. According to Hannemann (1995), these two species are easily separable by the shape of the gnathos: elongated in A. parilella - which was the case of the males reared from P. oreoselinum - and “round” in A. selini, and so it was in the males reared from P. cervaria. These identifications seemed uncontroversial: Hannemann mentions P. oreoselinum and P. cervaria for A. parilella and Selinum carvifolium, Pe. palustre and P. cervaria (listed as Athamantha cervaria, following Heinemann’s original description) for A. selini.

Part of the work for “ME: Depressariinae”, which started in 2010, was to obtain DNA barcodes from as many species of Depressariinae as possible, so
also from the reared *A. selini* from Mödling. But unexpectedly the sequence turned out to be that of *A. angelicella*. At the time, the identification as *A. selini* seemed so certain that this sequence was interpreted as the result of a local introgression. In 2011 further specimens from Switzerland, also reared from *P. cervaria* and with the same external appearance and the same shapes of genitalia as ”*A. selini*” from Mödling, were barcoded, and the sequence also resulted identical with *A. angelicella*. This makes introgression rather unlikely.

At the same time, males from Italy and Croatia were dissected, which also showed a more or less round gnathos but a cuiller of very uncommon shape (figs 9–14), never seen in any figure of Hannemann (1953) or in any species of *Agonopterix*. Barcode resulted in a sequence corresponding with ”*A. selini*" from Finland. Images of the genitalia from Finnish specimens were found on http://www2.nrm.se/en/svenska_fjarilar/a/agonopterix_genitalia.html: they correspond with the shape shown in figs 9-14. In the years 2012 and 2013, barcoding of *Agonopterix* from Southern Europe, also with round gnathos, produced a further cluster, which resulted in the discovery of constant differences in male and female genitalia. It was now clear that at least three *Agonopterix* species with round gnathos exist.

Material and methods

Material has been examined from MFSN (Museo Friulano di Storia Naturale, Udine), MFN (Museum für Naturkunde der Humboldt-Universität, Berlin), NMV (Natural History Museum Vienna), NMPC (Národní Muzeum v Praze, Česko ["Natural Museum Prague, Czech Republic"] TLMF (Tiroler Landesmuseum Ferdinandeum, Innsbruck), ZMUC (Zoological Museum, University of Copenhagen, Denmark) and ZSM (Zoologische Staatssammlung München).

Additionally, specimens from many private collectors have been checked (listed here only if the material was of particular importance for this paper): Helmut Deutsch, Toni Mayr, Wolfgang Stark (Austria), Jan Šumperk (Czech Republic), Knud Larsen (Denmark), Jari Junnilainen, Kari Nupponen (Finland), Günter Baisch, Friedmar Graf, Theo Grünwald, Rudolf Keller, Willibald Schmitz, Franz Theimer, Joachim Viehmann, Andreas Werno (Germany), Cs. Szabóky (Hungary), Carlo Morandini, Lucio Morin (Italy), Ivan Richter, Lubomir Srnka, Zdenko Tokar (Slovakia), Peter Sonderegger (Switzerland).

84 specimens (70 males, 14 females) of *A. selini*, 43 specimens (29 males, 14 females) of *A. lessini* sp. n. and 74 (44 males, 30 females) of *A. paraselini* sp. n. have been examined; for each species, this number includes both reared and light-trapped specimens.

Morphological examination

Genitalia preparations followed standard techniques (Robinson 1976), but with some differences:
- Male preparations were stained with mercurochrome and females with chlorazol, which brings a better result than using the same stain for both sexes.
- In females, a different method was used for embedding on the slide: once put into Euparal, a piece of a cover glass is put on, covering the VIII segment but not the papillae anales. On either side of the papillae anales, feet for the final cover glass are fixed. The preparation has to be stored in a dust-free place for drying about one month, before the final cover glass is put on. This double-mounting allows both a good fixation of the slide and preservation of the natural shape of papillae anales. If the shape of papillae anales in lateral view is shown, the photo was taken from the free floating genitalia before embedding. Special care was taken to preserve the ductus seminalis, because the number of turns may be an important feature for species determination.

When determining *Agonopterix* species based on female genitalia, one must always be aware that interspecific differences throughout the genus are small, while intraspecific variability is as in most Lepidoptera, that means, intraspecific variation may exceed interspecific differences. This makes it difficult, in some species groups even impossible, to get reliable determination results based on female genitalia only.

About male preparations additional remarks also have to be added: the gnathos of all three species treated in this paper appear more or less round in standard preparation, but it is not globose, in fact it is a rather flat disc (compare figs 10, 39 and 67, showing gnathos in natural position from ventral view) which must change its position during embedding in standard preparation by turning 90° to the left or the right. If the shape of gnathos is checked on a dried male without full preparation, it is important to know this, because a look at the gnathos from ventral or rear side shows a long and narrow outline. The anellus with its bilobed process toward the transtilla (as usual in the *A. alpigena/ selini* - group, see figs 15-17) is prone to the formation of artifacts: figs 15-16 shows the two horns in natural position in lateral view, they are at an angle of about 70° to the plane of the finished preparation, and usually they turn towards transtilla, but sometimes they turn towards the vinculum. And if they turn toward the transtilla, they abut the lower edge of the transtilla lobes, which can cause them to bend. This should be considered when preparations are compared.

Decisive for the choice of the specimens as holotypes and neotype was a good state of preservation and the presence of DNA barcode and/or information about
the food-plant. Photos of specimens in total view were taken with Canon EOS 5D Mark III and Canon lens EF 100mm 2.8 L IS USM at 1:1. Specimens were illuminated with two diffused flashes, using a third flash for setting the background whiteness. Photos of specimen details were taken with microscope (Wild Heerbrugg) using a 10x objective and a 2.5x ocular. All photos (except larvae) were edited using the software Helicon Focus 4.80 and Adobe Photoshop 6.0. All photos except fig. 1 had been taken by the author.

For creating the black and white photos, the G alpha channel of the RGB originals was used in males and the Y alpha channel of the CMYK originals in females, due to the different stains.

DNA Barcoding

The full length lepidopteran DNA barcode sequence is a 658 basepair long segment of the 5' terminus of the mitochondrial COI gene (cytochrome c oxidase 1). DNA samples (dried leg) were prepared according to the accepted standards and were processed at the Canadian Centre for DNA Barcoding (CCDB, Biodiversity Institute of Ontario, University of Guelph) to obtain DNA barcodes using the standard high-throughput protocol described in deW aard et al. (2008). DNA sequencing of twelve specimens of A. selini resulted in eight full barcode fragments, three sequences are incomplete (560, 604 and 648 bp); nine specimens of A. lessini sp.n. resulted in nine full barcode fragments, three sequences are incomplete (560, 604 and 648 bp); nine specimens of A. lessini resulted in eight full barcode fragments and one sequence of 229 bp; eight specimens of A. paraselini sp.n. all resulted in full barcode fragments. Detailed specimen data are listed under molecular data of species description. Sequences were submitted to GenBank, details including complete voucher data and images can be accessed in the public dataset DS-DEEUR326 at http://www.boldsystems.org/index.php/Public_SearchTerms?query=DS-DEEUR326, DOI dx.doi.org/10.5883/DS-DEEUR326 in the Barcode of Life Data Systems (BOLD: RATNASINGHAM & HEBERT 2007). Neighbour-joining trees of DNA barcode data were constructed using Mega 5 (TAMURA et al. 2011) under the Kimura 2 parameter model for nucleotide substitutions.

Redescription of Agonopterix selini (HEINEMANN 1870) with designation of a neotype

Neotype: ♂, Germany, Saxonia, Oberlausitz, Klein-saubernitz (ca. 200 km ESE Braunschweig), reared from Selinium carvifolium 06.VI.2011, leg. & cult. Friedmar Graf, Gp DEEUR 1862 P. Buchner, coll. TLMF. Further specimens examined:

1 ♀: Austria, Innsbruck, 20.VII.1941, leg. K. Burmann, coll. TLMF.
1 ♂: Austria, Styria, Lafnitz, 15.VII.1992, leg. Kirchweger, coll. TLMF.
1 ♀: Greece, Litochron, 300 m, 23.VI.1957, leg. W. Thurner, coll. ZSM.
3 ♂♂: Greece, Olympos, 800 m, 06.VII.1967, leg. J. Klimesch, coll. ZSM.
1 ♂: Greece, Olympos, 2100 m, 19.VII.1967, leg. J. Klimesch, coll. ZSM.
1 ♂: Greece, Kavala, Pangeo, 1700 m, 24.VIII.1989, leg. & coll. K. Larsen.
1 ♀: Greece, Makedonia, Thessalia, Olympos, 700 m, 26.V.1990, e.l. Peucedanum oreoselinum, leg. O. Karsholt, coll. ZMUC.
1 ♂, 1 ♀: Greece, Filipei, Grevena, Voria Pindos, 1500m, e.l. Selinium carvifolium, 29.VII.2013, leg. & coll. J. Viehmann.
2 ♂♂, 1 ♀: Italy, Mt. Baldo, 1600 m, VI.1961, e.l. Ligusticum lucidum, leg. K. Burmann, coll. TLMF.
1 ♂: Romania, Rimetea, 600 m, 31.V.2009, leg. O. Karsholt, coll. ZMUC.
1 ♂: Slovenia, Nanos, 1050 m, 31.V.1997, leg. H. Deutsch, coll. TLMF.
2 ♂♂: Slovenia, Kozina, 450m, 23.V.2004, e.l. Peucedanum sp., leg. H. Deutsch, coll. TLMF.
3 ♂♂: Spain, Teruel, Sierra de Javalambre, 1820 m, leg M. Dworak & J. Sumpich, coll. NMPC.
Justification for designating a neotype:

The conditions suggesting the need to designate a neotype and the criteria adopted in selecting the neotype specimen are in accordance with Art. 75 of the Code (ICZN, 1999).

Hannemann had failed to find the syntypes: he had checked all accessible types for his paper (Hannemann 1953) or at least he mentioned where they are stored, but he does not give any information about types or syntypes of A. selini.

Depressaria selini (so in original description) was described from an unspecified number of specimens without designation of a type. The specimen(s) which form the basis for his description were collected near Braunschweig. So it was obvious to look in museum Braunschweig at first, but without result. In museum Hannover, where the syntypes were stored according to literature (Horn et al. 1990), also nothing could be found. Looking for further (syn)types of species described by Heinemann in 1870 (Depressaria beckmanni and Depressaria silesiaca) stored in museum Hannover according to literature brought the same negative result. There are also no records of loans or other helpful details concerning such specimens (answer per mail on 10 May 2016 from Christiane Schilling, Landesmuseum Hannover). This should be enough evidence to regard the syntypes of A. selini as lost.

Until now there has been some confusion around the species of Agonopterix with round gnathos, of which only one can be A. selini (Heinemann, 1870). To clarify this situation without designating a neotype for A. selini would be unsatisfactory.

Justification for conspecificity of the selected species with Agonopterix selini (Heinemann, 1870)

Heinemann mentions Selinum carvifolium as food-plant and gives a good description of the larva: “... Schläger fand die Raupe bei Jena an Athamantha cervaria, ich bei Braunschweig im Mai und Juni auf Selinum carvifolium zwischen zusammen gewickelten Blättern. Sie unterscheidet sich von der der A. parilella an Athamantha oreoselinum (Zll. Is. 1846. 281. - Nat. hist. 6. tf. 6. fg. 2a.) vorzugsweise durch die scharze Aftersklappe.” (Schläger found the larva near Jena on Athamantha cervaria, and I near Braunschweig in May and June on Selinum carvifolium between coiled leaves. It differs from parilella on Athamantha oreoselinum ... especially by the black disc at rear end) (Heinemann 1870). This makes the decision easier than initially expected: larvae corresponding to Heinemann’s description were collected from Selinum carvifolium in Oberlausitz near Braunschweig, and the males showed a cuiller as in Finnish specimens. Larval features from the specimens reared near Vienna are clearly different (figs 73-75 and 70-72) and the populations representing the third cluster has a strictly Southern European distribution.

Justification for the specimen selected as neotype

The selected specimen was collected recently not far from the type locality, with knowledge of the food-plant (Selinum carvifolium) and larval features (fig.1)

Description

Imago (figs 2-5): Wingspan 16-20 mm. Head and thorax yellowish to rusty brown, usually not unicolorous but both colours present, rusty brown
parts predominantly concentrated at the anterior side of thorax. Labial palp predominantly pale yellowish, outer side of second segment with dark scales interspersed, third segment entirely pale yellowish or only with a few dark scales, not forming a distinct ring. Antenna blackish, markedly thicker in males than in females (as usual in the *selini/alpigena* group). Forewing: Ground colour usually rusty brown (figs 3-4), sometimes yellow components are reduced in favour of violet or grey (fig. 2), basal field markedly paler, pale yellowish, but becoming darker, usually rusty brown near the costa. Central forewing pattern: outer pair of dots with always distinct white centred distal dot, proximal dot variable, sometimes absent (fig. 3), usually black without white elements or with a few white scales (fig. 2), rarely white elements distinct and as large as in distal dot (fig. 4), this area often surrounded by a diffuse blackish field; inner pair of black dots: both dots present (fig. 2) or proximal one invisible (fig. 3), sometimes with a few white scales especially on distal side of the dots (figs
A third, somewhat elongated dot often present at half distance to dorsal forewing margin on the fold (most distinct in fig. 2).

Cilia of the same color as wings. Lower side of forewing dark grey, only costa with some pale spots (fig. 7). Hindwing medium to dark grey distally, becoming paler and moderately translucent at base, cilia of the same color as wings, usually with a narrow dark cilia line near base. Legs: tarsi covered with small, predominantly dark grey scales tending to become paler on inner side on mid- and hindlegs, at the distal end of every tarsal segment a row of longer, pale yellowish scales, in tibia and femur the small dark grey scales interspersed with an increasing proportion of pale scales especially on mid- and hindlegs, tibia of hindlegs also with very long, pale yellowish scales (fig. 8). Abdomen medium to dark yellowish grey dorsally, on ventral side with broad dark line laterally and pale yellowish in between (fig. 7).

Variation: ground colour of forewing varying from reddish brown to greyish brown, sometimes with violet components, irregular interspersed dark elements varying from nearly absent (fig. 3) to rather dense (fig. 5), variability of central forewing pattern as in general description, dark cilia line in hindwings broader (fig. 3) or nearly invisible (fig. 5).

Beside this, every single feature shows some variability, which makes it difficult or impossible to
separate a single specimen from the similar species A. parilella, A. lessini sp. n. and A. paraselini sp. n. based on external characters. But there are tendencies, which may help to select specimens for dissection:

A. lessini sp. n. corresponds in most details with A. selini, but the third segment of the palp usually has distinct blackish areas, which may form a dark ring, and the ground colour of forewings tends more to violet. For details see the description below.

A. paraselini sp. n. is usually darker, smaller and forewing patterns reduced to central dot, but external features are overlapping. But male and female genitalia are clearly different, so for further details see description of this species.
Fig. 13 - Same specimen as fig. 12, valva cleaned, phallus in lateral and ventral view.

- Stesso esemplare di fig. 12, valva ripulita, phallus in visione laterale e ventrale.

Fig. 14 - *A. selini*, valva with somewhat malformed cuiller (Slovakia, Michalovce, leg. K. Larsen, Gp. DEEUR 2809 P. Buchner).

Fig. 16 - *A. selini* (Italy, Veneto, Mt. Baldo, e.l. *Ligusticum lucidum* end of May 1961, leg. & cult. K. Burmann, Gp. DEEUR 1579 P. Buchner, coll. TLMF): anellus and anellus processes in natural position compared with position in standard preparation; blue lines: anellus, green: sclerotized upper edges of anellus (common structure in *Agonopterix*), red: "bicorned" process of anellus (structure which is often distinct in *A. alpigena/selini* - group, but with wide intraspecific variability), in natural position nearly perpendicular to anellus. Apparently, this structure forms a guiding channel for the phallus.

A. parilella is slightly smaller, but over a wingspan of 15-18 mm the size ranges are overlapping. Head, thorax and basal field usually more unicolorous, most often yellow or sometimes pinkish, rusty brown areas on thorax small or absent and in basal field only in a small area on costa or absent. The fusiform and therefore completely different shape of gnathos (fig. 65), which is sometimes visible in dried specimens without any further preparation, offers the chance of certain determination sometimes even without full dissection. Therefore, this species is not discussed in more detail below.

Male genitalia

Cuiller: Form of cuiller is unique in European species of Agonopterix, at least in the specimens in which it is well formed: distinctly swollen shortly above the middle, bulge predominantly extending proximally, curved inward and tapering toward the end to a rather sharp tip, somewhat resembling a raptor’s claw. In some specimens, however, the cuiller is more or less malformed (so it was in 6 of 20 males which were dissected in preparing this paper, example see fig. 14). If “malformed” describes the situation correctly is debatable, but most of these specimens showed left and right cuiller formed somewhat differently, i.e. asymmetric, so I see no reason to avoid this word. But always the basic structure was recognizably visible.

Outline of valva: Distal half of valva not parallel-sided, compare description of A. lessini sp.n.

Gnathos: It appears more or less round in standard preparation, but not necessarily evenly rounded, more often it is somewhat square (figs 12-14) or a little elongated (fig. 9). But important to say, this is the lateral outline! To show the natural position of gnathos, a photo from unopened valva-complex from ventral side was taken (fig. 10). This is a very labile position, i.e. asymmetric, so I see no reason to avoid this word. But always the basic structure was recognizably visible.

Female genitalia (figs 18-20, 23)

Anterior margin of sternite VIII somewhat extended towards the bursa, either with straight margins on each side and forming an angle of about 130° (fig. 20) or anterior margin extended towards the bursa only in central part by forming a bulge (fig. 19) or intermediate (fig. 18), ostium starting from anterior margin, elongate, its lateral folds reaching nearly to the posterior margin of sternite VIII, somewhat resembling the flame of a candle (figs 18-19), but lateral folds not always present in this shape, which may at least in part depend on preparation artefacts (fig. 20). Ductus seminalis with about 8 turns. Ductus bursae rather stout with structures common in genus Agonopterix, widening a little in its course. Corpus bursae of average size (diameter about 2/3 lateral extension of VIII sternite in standard preparation, i.e. dorsoventrally flattened), signum broad oval (lateral/longitudinal extension about 1-1.5), of average size (maximum diameter about 30-40 % of diameter of bursa).

If the ostium appears in the typical elongated form (figs 18-19), A. selini is easily discernible from externally similar species, e.g. A. parilella, A. paraselini sp.n. and A. lessini sp.n. If the ostium region does not appear in the typical form (fig. 20), its position at the anterior margin and the extension of the anterior margin towards bursa may help in the identification of specimens. Against A. parilella most helpful is the number of turns of ductus seminalis: 8 in A. selini (fig. 18) and 4-4 ½ in A. parilella (fig. 21).

Molecular data (neighbour-joining tree see fig. 48)

Barcoded material:

Fig. 19 - *A. selini*, female genital, VIII segment with ostium region in detail (Greece, Olympos, e.l. *Peucedanum oreoselinum* 22.VI.1957, leg. Thurner, Gp. DEEUR 2078 P. Buchner, coll. ZSM).

Fig. 21 - *A. parilella*, VIII segment with ostium region in detail + ductus seminalis (Slovenia, Studor, 4.VIII.1999, leg. F. Graf, Gp. DEEUR 1111 P. Buchner).
81

Fig. 22 - *A. paraselini* sp.n. (described in this paper), VIII segment with ostium region in detail (Lower Austria, Neusiedel/Zaya, e.l. *Peucedanum cervaria* 06.VI.2014, leg. cult. & Gp. DEEUR 2121 P. Buchner).

- *A. paraselini* sp.n. (descritta nel presente articolo), VIII segmento con dettaglio della regione dell’ostium (Bassa Austria, Neusiedel/Zaya, e.l. *Peucedanum cervaria* 06.VI.2014, leg. cult. & Gp. DEEUR 2121 P. Buchner).

Related species

Neighbour-joining analysis shows *Agonopterix alpigena* as the nearest neighbour with 1.85% p-distance. Further species which are near *A. selini* according to barcode are *A. lessini* sp.n. (described in this paper), *A. ferulae* and *A. socerbi*. That there exists a closer relatedness among these species is also supported by the presence of a bicorned process of the anellus toward the transtilla in male genitalia (e.g. fig. 16, but note, this structure shows a large variability within every species) and very large transtilla lobes, which overlap the transtilla. Together with *A. cachritis*, a species so far without barcode data, but also with corresponding features in male genitalia, these species can be grouped in an informal “*selini/alpigena*-species group”. The externally similar species *A. parilella*, *A. angelicella* and *A. paraselini* sp.n. (described in this paper) do not belong to this group.

Distribution

Specimens which have been checked by dissection or barcoding, have been obtained from Austria, Croatia, Finland, France, Germany, Greece, Hungary, Italy, Romania, Slovakia, Slovenia, Spain and Turkey.

Biology

Caterpillars had been found on and reared with *Peucedanum palustre* (Finland), *Selinum carvifolium* (Germany), *Peucedanum oreoselinum* (Italy, Greece) and *Ligusticum lucidum* (Italy). All specimens stored
in NHMV and TLMF under *A. selini*, which were reared from *P. cervaria* (Lower Austria: Mödling, Gramatnueisiedel, Neusiedel/Zaya) and the specimens collected as larvae in Switzerland from *P. cervaria* by P. Sonderegger, turned out to be *A. paraselini* sp.n. During preparation of this paper, no specimen of *A. selini* has been found which was reared from *P. cervaria*. Heinemann mentioned in the original description “Schläger fand die Raupen bei Jena an *Athamantha cervaria* [Peucedanum cervaria]...” But these specimens could not be checked. Therefore at present it remains doubtful if *P. cervaria* is a food-plant of *A. selini* at all.

Agonopterix lessini sp. n.

Material

Holotype:

Paratypes:
1 ♀: Italy, Veneto, Verona: Monte di Sant’Ambrogio Valpolicella, 20.X.1984, leg. K. Burmann, coll. TLMF.
1 ♂: Italy, Verona, Monte di Sant’Ambrogio Valpolicella, 06.IX.1988, leg. K. Burmann, coll. TLMF.
1 ♂: Italy, Friuli V.G., Monfalcone, 10.IX.1993, leg. T. Mayr, coll. TLMF.
1 ♂: Italy, Veneto, Verona: Monte di Sant’Ambrogio Valpolicella, 20.IX.1984, leg. K. Burmann, coll. TLMF.

Fig. 25 - *A. lessini* sp.n., upper side, ♂ (Italy, Veneto, Verona: Monte di Sant’Ambrogio Valpolicella, e.l. *Ferulago nodiflora* [*F. campestris*] 20.VI.1986, leg. K. Burmann, coll. TLMF).

Fig. 27 - *A. lessini* sp.n., upper side, ♂ (Greece, Kriti, Rethymnon, e.l. *Ferulago* sp. 24.IV.1996, leg. R. Johansson, Gp. DEEUR 2543 P. Buchner, coll. ZMUC).

Fig. 28 - *A. lessini* sp.n., upper side; ♂, rather worn autumn specimen (Italy, Veneto, Verona: Monte di Sant’Ambrogio Valpolicella, 12.IX.2010, leg. H. Deutsch, Gp. DEEUR 1546 P. Buchner, coll. MFSN).
Fig. 29 - A. lessini sp.n., lower side, ♂ (Italy, Veneto, Verona, Monte di Sant’Ambrogio Valpolicella, e.l. Ferulago nodiflora [F. campestris] 24.VI.1986, leg. K. Burmann, coll. TLMF).

Fig. 30 - A. lessini sp.n., detail views of palp, ♂ (Greece, Kriti, Rethymnon, e.l. Ferulago sp. 24.IV.1996, leg. R. Johansson, Gp. DEEUR 2543 P. Buchner, coll. ZMUC).

1 ♀: Italy, Verona, Monte di Sant’Ambrogio Valpolicella, 05.X.2001, leg. Schütze, coll. R. Keller.

1 ♂: Italy, Toscana, Marradi, 02.VIII.2002, leg. A. Uselli, coll. MFSN.

Based on external characters only, but there are tendencies: A. selini corresponds in most details, but third segment of the palp with distinct blackish areas (without dark areas in A. selini), and the brown ground colour of forewings tends more to violet than in A. selini.

A. parilella and A. paraselini sp.n. are a little smaller in average size, but overlapping over 14-18 mm. Ground colour of A. parilella and A. paraselini sp.n. usually dark brown.

Male genitalia show clear differences: A. parilella has a fusiform, therefore completely different shape of gnathos (fig. 65), which is sometimes visible in dried specimens without any further preparation and offers the chance of certain identification without full dissection. A. selini has very distinct and clearly different cuiller (figs 9 and 11-14), and in A. paraselini sp.n., the transtilla lobes are rather small, not overlapping the transtilla, and the cuiller is less tapering and straight in the last one-third (figs 62-63).

Female genitalia also show differences: Ostium in A. lessini sp.n. circular, with fine, sharp outline based on external characters only, but there are tendencies: A. selini corresponds in most details, but third segment of the palp with distinct blackish areas (without dark areas in A. selini), and the brown ground colour of forewings tends more to violet than in A. selini. A. parilella and A. paraselini sp.n. are a little smaller in average size, but overlapping over 14-18 mm. Ground colour of A. parilella and A. paraselini sp.n. usually dark brown.

Diagnosis

Externally similar to A. selini, A. parilella and A. paraselini sp.n. and not possible to identify with certainty.
except on caudal edge (figs 42-44). In *A. selini* it is elongated (figs 18-20) and therefore clearly different. In *A. paraselini* sp.n., *A. angelicella* and *A. parilella*, it is of average shape for genus *Agonopterix*, and additionally, in *A. parilella* there are only four turns of ductus spermathecae, compared to about seven in *A. lessini* sp.n.

To show distinctive features of ostium/antrum region of *A. lessini* sp.n., it is best to compare with *A. paraselini* sp.n. and *A. angelicella* based on figures:

A. paraselini sp.n. (figs 45, a-b, fig. 47) and *A. angelicella* (fig. 45, c) show features found in several species of *Agonopterix*, and lacking details useful for species determination:

Ostium circular or nearly so, often somewhat irregular and distorted in standard preparation, caused by pressing the ventral part of ostium to VIII sternite in the preparation process; diameter about 15 % of width of VIII segment in standard preparation. Below it (in figures) the antrum, a triangle in standard preparation
Description

Imago (figs 24-34): Wingspan 16-20 mm (one specimen 14 mm, fig. 27). Head, thorax and tegulae yellow or rusty brown, with a tendency to being darker on the anterior part of thorax and tegulae. Labial palp: outer side of second segment reddish brown with dark scales interspersed, inner side pale, third segment pale yellowish, dark scales at base and above middle, sometimes forming distinct rings. Antenna: upper side blackish, lower side medium grey brown, markedly thicker in males than in females (as usual in the selini/alpigena group). Forewing: Ground colour usually reddish brown (figs 24-25 and 28), sometimes with violet tinge (figs 26-27), basal field

Fig. 39 - A. lessini sp.n. (Italy, Veneto, Verona, Monte di Sant’Ambrogio Valpolicella, 12.IX.2010, leg. H. Deutsch, Gp. DEEUR 1546 P. Buchner, barcode TLMF-Lep1795, coll. MFSN): valva not opened, free floating, to show the natural proportion of gnathos from ventral view.

Fig. 40 - A. lessini sp.n. (Italy, Veneto, Verona, Monte di Sant’Ambrogio Valpolicella, 12.IX.2010, leg. H. Deutsch, Gp. DEEUR 1546 P. Buchner, barcode TLMF-Lep1795, coll. MFSN): phallus, not compressed, in ventral position, to show the natural length/width ratio and shape of basal process.

(a funnel tapering cranially in natural situation) with two fusiform structures laterally. Longitudinal extension of antrum exceeding width of ostium, fusiform structures predominately located in antrum.

In A. lessini sp.n. (fig. 45, d-e), ventral margin of ostium runs further below (in figure) (resp. further cranially in natural position), therefore longitudinal extension of antrum is shorter than diameter of ostium and fusiform structures predominately located in ostium. The specific form of ostium also causes a shorter dorsoventral distance of lower edge of ostium to VIII sternite, so it usually does not become distorted when dorsoventrally flattened in preparation process, resulting in a more clear circular outline in final preparation. These features allow a determination of A. lessini sp.n. based on female genitalia.
markedly paler, yellowish (figs 24 and 27), or reddish brown (figs 25-26). Central forewing pattern: outer pair of dots with always distinct white centred distal dot, proximal dot absent or indistinct and without white elements, rarely with white centre, this area often surrounded by a diffuse blackish field; inner pair of black dots present but rather indistinct, a few white scales especially on the distal side of the dots may be present or not.

Cilia concolorous with wings. Underside of forewing dark grey, only costa with some yellowish spots. Hindwing dark grey distally, moderately translucent at the base. Legs covered with a mix of dark grey and pale scales, percentage of dark scales varying individually (figs 33-34), tibia
Fig. 45 - Comparison of ostium/antrum region in standard preparation, a-b: A. paraselini sp.n., c: A. angelicella, d-e: A. lessini sp.n. Colour lines in a: cyan=left half of ostium, magenta=left outline of antrum, yellow=left one of the two fusiform structures.
- Confronto tra ostium e antrum in preparazione standard, a-b: A. paraselini sp.n., c: A. angelicella, d-e: A. lessini sp.n. Colori delle linee in a: ciano=metà sinistra dell’ostium, magenta=contorno sinistro dell’antrum, giallo= struttura fusiforme sinistra.

Fig. 46 - A. lessini sp.n., same specimen as fig. 42, sternite VIII + papillae anales in lateral view, free floating.
- A. lessini sp.n., stess esemplare della fig. 42, sternite VIII + papillae anali in visione laterale, non fissato.

Fig. 47 - Ostium/antrum region of A. paraselini sp.n., lateral view in free floating genitalia. Colour lines as in fig. 45, red line shows dorsoventral distance of lower edge of ostium to VIII sternite, for further details see text.
- Ostium e antrum di A. paraselini sp.n., visione laterale del genitale non fissato. Colori delle linee come in fig. 45, la linea rossa mostra la distanza dorsoventrale del bordo inferiore dell’ostium all’VIII sternite, per ulteriori dettagli si veda il testo.
of hindlegs with very long scales outside. Abdomen greyish, with broad dark line laterally on the ventral side (fig. 29).

Variation: ground colour of forewing varying from grey to reddish brown to very dark violet brown, forewing rarely unicolourous (fig. 27), more often irregular interspersed dark elements visible, variability of central forewing pattern as in general description. Head, thorax and basal field of forewing with different proportions of yellow areas.

Male genitalia

Cuiller: Length about two-thirds of the width of the valva, broad at the base, gradually becoming narrower, blunt, S-shaped, distal edge concave in the central half, proximal edge concave in the terminal one-fifth.

Outline of valva: very broad over all length, tapering only a little toward the middle, here bent inward approximately 35-40°, distal third parallel-sided or nearly so, ending very blunt.
Gnathos: about as broad as long in standard preparation, breadth/length ratio about 1:1 (figs 35-38). (For further details about shape of gnathos see “Material and methods”).

Socii: large, with a square outline, gnathos - if in upright position - nearly reaching the upper edge in standard preparation (figs 35-37). Ratio not clear if the gnathos is turned downward (fig. 38).

Anellus: with a bilobed process toward the transtilla, as usual in the A. alpigena/selini group, average size of this process within A. lessini sp.n. not as long and stout as e.g. in A. selini.

Transtilla and transtilla lobes: Transtilla strongly broadened in central part, bulged toward the vinculum, transtilla lobes large, touching each other or nearly so, upper parts overlap the transtilla and lower parts sometimes overlap the anellus process, depending on the anellus-transtilla distance, which shows large variability.

Phallus: slim (width about 10-12 % of its length), moderately curved in lateral view (about 30-35°, Figs 35-37 and 41), tapered to a sharp tip, basal process long (free part about one-third of phallus length), strongly broadened at the end in ventral view (fig. 40, note: basal process appears shorter in ventral than in lateral view, because in lateral view it is perpendicular to photo direction, but not in ventral view).

Female genitalia

Anterior margin of sternite VIII rather straight, ostium located in the anterior half of sternite VIII at some distance (about 1/2 of ostium diameter) to anterior margin, round, with narrow outline, outline not forming a complete ring but absent in the caudal margin of the ostium, from this area a diffuse pale (less sclerotized) field extends to the posterior margin of sternite VIII. Ductus seminalis with about seven turns. Ductus bursae rather stout with structures common in genus Agonopterix, widening a little in its course. Corpus bursae of average size (diameter about half to two-thirds of lateral extension of VIII sternite in standard preparation, i.e. dorsoventrally flattened), signum oval, about two times as broad as long, of average size (maximum diameter about 30-40 % of diameter of bursa).

Molecular data (neighbour-joining tree see fig. 48)

Barcoded material:
TLMF Lep 07176 (658 bp., ♂, Italy, Friuli V.G., Carso Triestino, Ceroglie, 45.733° N; 13.75° E, 08.IX.2011,
Fig. 50 - *A. paraselini* sp.n. (Switzerland, Neuenburg, Le Landeron, e.l. *Peucedanum cervaria*, leg. larva 27.V. 2005, leg., cult. & coll. P. Sonderegger). For details see text under “Description”.

Fig. 51 - *A. paraselini* sp.n. (Lower Austria, Steinberg near Neusiedel/Zaya, e.l. *Peucedanum cervaria*, leg. larva 21.V., e.p. 06.VI.2014, leg., cult. & coll. P. Buchner).

Fig. 52 - *A. parilella* (Austria, Mödling, e.l. *Peucedanum cervaria*, leg. larva P. Buchner 17.V. e.p. 11.VI.2008). For details see text under “Description”.

Fig. 53 - *A. parilella* (Austria, Hundsheim, e.l. *Peucedanum oreoselinum*, leg. larva 10.V. e.p. 08.VI.2008, leg., cult. & coll. P. Buchner).

Fig. 54 - *A. angelicella* (Austria, Innsbruck, e.l. *Peucedanum* sp., leg. larva K. Burmann VI.1966, coll. TLMF).

Related species

Neighbour-joining analysis shows *A. ferulae* as the nearest neighbour with 1.7% p-distance. Further species which are near *A. lessini* sp.n. according to barcode are *A. selini*, *A. alpigena* and *A. socerbi*. That there exists a close relatedness among these species is also supported by the presence of a bicorned process of the anellus pointing towards the transtilla in male genitalia (but note, this structure shows a large variability within every species) and very large transtilla lobes, which overlap the transtilla. Together with *A. cachritis*, a species so far without barcode data, but also with corresponding features in male genitalia, these species can be grouped in an informal “*selini/alpigena* species group”. The externally similar species *A. parilella*, *A. paraselini* sp.n. and *A. angelicella* do not belong to this group.

Distribution

Specimens which have been checked by dissection or barcoding, have been obtained from Croatia (South Velebit), France (Col de Braus), Greece (Criti: Rethymnon; Omalos; Epirus; Delphi), Italy (Verona: Monti Lessini; Toscana: Marradi; Friuli Venezia Giulia: Carso Goriziano, Carso Triestino, Monfalcone), Slovenia (Nanos) and Turkey (Erzurum: Kop gecidi).

Biology

K. Burmann reared 6 specimens from *Ferulago nodiflora* (now valid as *F. campestris*) e.p. 20.–29.VI.1986, Italy, Verona, Monte di Sant’Ambrogio Valpolicella. With this emergence date it is possible the species overwinters as adult, but no moth has been collected in early spring. So the final answer about phenology must remain open.

Derivation of name

The choice of the epithet “*lessini*” has two reasons: First of all it is derived from the collecting place Monti Lessini, from where more paratypes have been collected.
than from any other place and which is the only locality where the species has been reared on feeding plant identified to species level. The second reason for this choice is the fact, all specimens so far had been determined (if determined at all) as *A. selini*. This new species had therefore formed completely from parts of "selini", and so it is also at the word’s level by taking "selini" and interchanging first and third letter - at least in spoken, although not exactly in written version.

Agonopterix paraselini sp. n.

Material

Holotype:

Fig. 56 - A. paraselini sp.n., lower side (Austria, Mödling, e.l. *Peucedanum cervaria*, leg. larva 25.V. e.p. 07.VI.2013, leg., cult. & coll. P. Buchner).

Fig. 57 - A. paraselini sp.n., palps and head in frontal view (Austria, Mödling, e.l. *Peucedanum cervaria*, leg. larva P. Buchner 17.V. e.p. 11.VI.2008, coll. TLMF).

Fig. 58 - A. paraselini sp.n., lateral view (Austria, Mödling, e.l. *Peucedanum cervaria*, leg. larva 25.V. e.p. 07.VI.2013, leg., cult. & coll. P. Buchner).

Paratypes:
1 ♂: Austria, Lower Austria, Mödling, 1870, no further data, interim determination as A. parilella, coll. NHMV.
1 ♂: Austria, Lower Austria, Gumpoldskirchen, 48°3.2’N, 16°14.4’E, e.l. Peucedanum cervaria, leg. Preissecker, e.p. 25.VI.1923, coll. NHMV.
1 ♂: Austria, Lower Austria, Gramatneusiedel, 48°03’N, 16°30’E, e.l. Peucedanum cervaria, leg. larva F. Kasy, e.p. 13.VI.1967, interim determination F. Kasy as A. parilella, coll. NHMV.
1 ♀, 1 ♂: Austria, Lower Austria, Fischawiesen, 48°03’N, 16°30’E, e.l. Peucedanum cervaria, leg. larva E. Jäckh, e.p. end of VI.1972, interim determination as A. selini E. Jäckh, coll. TLMF.

1 ♀, 4 ♂: Austria, Lower Austria, Steinberg 10 km W Hohenau/March, 48°37’N, 16°48’E, leg. F. Lichtenberger 08.VII.1988 (1 ♀) and 13.VII.1990, coll. TLMF.
6 ♀, 4 ♂: same collecting place and breeding data
Fig. 64 - *A. angelicella* (Italy, Friuli V.G., Alpi Carniche, Mt. Crostis, 29.VII.2005, leg. & coll. L. Morin).

Fig. 65 - *A. parilella* (Slovakia, Laksarska nova ves, 04.VIII.2007, leg. & coll. L. Srnka).

Fig. 67 - *A. paraselini* sp.n., gnathos from ventral view, free floating (Lower Austria, Steinberg 10 km W Hohenau/March, leg. F. Lichtenberger 08.VII.1988, coll. TLMF).

- *A. paraselini* sp.n., gnathos in visione ventrale, non fissato (Bassa Austria, Steinberg 10 km W Hohenau/March, leg. F. Lichtenberger 08.VII.1988, coll. TLMF).

Fig. 68 - A. angelicella (Austria, Tyrol, Innsbruck, leg. K. Burmann 17.VII.1940, coll. TLMF).
- A. angelicella (Austria, Tirolo, Innsbruck, leg. K. Burmann 17.VII.1940, coll. TLMF).

Fig. 69 - A. angelicella (Lower Austria, Semmering, ex.l. Angelica sylvestris, leg. 15.VI.2006, e.l. 29.VI.2006, leg., cult. & coll. P. Buchner).

Fig. 70 - A. paraselini sp.n. (Lower Austria, Steinberg near Neusiedel/Zaya, ex.l. Peucedanum cervaria, leg. larva 21.V, e.p. 06.VI.2014, leg., cult. & coll. P. Buchner).

Fig. 71 - A. parilella (Germany, Thalhaus, e.l. Peucedanum oreoselinum, leg. larva 10.V., e.p. 06.VII.1909, coll. ZSM).
Diagnosis

Externally most similar to *A. parilella* (fig. 53) in rather unicolorous chestnut-brown to blackish brown forewings with a distinct white-centred central dot and absence of further distinct dots, and a distinct pale basal field. Only the average size of the central dot differs a little, being smaller in *A. paraselini* sp.n. than in *A. parilella*, but size overlaps. Based on male genitalia, it is easy to separate this species from *A. parilella* (fig. 65). Somewhat similar to *A. selini* and *A. lessini* sp.n. and not possible to identify with certainty based on external characters only, but these two species are usually larger, more bright coloured and with more distinct dots proximal to the central dot. Separating by genitalia is no problem, details under description of *A. selini* and *A. lessini* sp.n. On the other hand, *A. angelicella* has extremely similar male genitalia, but is markedly different externally (figs 54-55): central dot usually completely without white scales, only sometimes a few whitish scales present, surrounded by a diffuse dark area, which extends obliquely toward rear margin (only in very pale specimens sometimes indistinct), proximal to centre a paler area, which extends beyond the inner pair of black dots, making these dots clearly visible, but does not reach the basal field. Interneural dots more distinct, basal field less distinct than in *A. paraselini* sp.n. Based on genitalia, separating *A. paraselini* sp.n. from...
A.angelicella is really a problem. Only the shape of the transtilla remains as a good feature, it is narrow overall in A. angelicella (fig. 64) and markedly broadened in the middle in A. paraselini sp.n. (figs 62-63). In female genitalia, no differences have been found between these two species. In cases of doubt, biology helps to make a decision: Larvae of A. paraselini sp.n. have been found so far on Peucedanum cervaria only, while those of A. angelicella predominantly live on Angelica sylvestris, with additional reports from Peucedanum ostruthium, Bupleurum falcatum and Aegopodium podagraria.

Description

Imago (figs 49-52 and 56-61): Wingspan (13) 14-16 (17) mm. Head and thorax predominantly yellow with rusty brown parts usually on the cranial side of the thorax. Labial palp predominantly pale yellowish, outer side of second segment with dark scales interspersed, third segment pale yellowish, but usually dark areas in the distal one-third, which may form a distinct ring, rarely entirely pale (fig. 61). Antenna blackish, thicker in males than in females. Forewing: Ground colour usually dark rusty brown, basal field markedly paler, pale yellowish, but becoming darker, usually rusty brown near the costa. Central forewing pattern: central dot nearly always white centred (fig. 52, a), rarely white centre indistinct or even invisible, no other distinct white elements, usually two indistinct oblique black dots at one-third (fig. 52, b), rarely with a few paler scales on the distal side (fig. 50, a) and a third, somewhat elongated dot (fig. 52, c) often present at half distance to rear forewing margin on the fold (52, d). Central dot usually surrounded by a darker shadow, which may extend obliquely toward rear margin. (usually indistinct, more distinct e.g. in fig. 51). Hindwing medium grey distally, moderately translucent at the base. Underside of wings unicolorous medium grey.

Cilia more or less of the same color as the wings, darker in the basal one-third especially in the hindwing, this area forming a distinct line in fresh specimens, sometimes a very faint second dark line in the distal one-third. Legs predominantly dark, especially tarsi, but with a row of pale yellowish scales at the distal end of every segment, especially in forelegs, tibia of hindleg with very long, pale, somewhat rusty brown scales outside (fig. 58). Abdomen grey without distinct pattern, proximally becoming paler ventrally.

Variation: ground colour of forewing varying from blackish brown (fig. 51) to medium brown, and from unicolorous (fig. 52) to a distinct fine irregular structure of darker and lighter areas (figs 49-50). Head and thorax beside the yellow parts with variable proportions of darker (brown to violet-brown) scales, sometimes darker scales dominate.

Male genitalia (figs 62-63 and 66-67)

Cuiller: broad, not tapering and ending bluntly at about 70-75 % of total width of valva, slightly outcurved over all its length, at the very end sometimes straight or very weakly curved.

Outline of valva: broad and not tapering in basal half, bent inward approximately 35° in the middle, moderately tapering in distal half, ending rather blunt.

Gnathos: broad elliptical in standard preparation, breadth/length ratio about 1:1.3 to 1:1.5 (But important to say, this is the lateral outline! Gnathos not or only a little (up to one-third of its length) overtopping the sconi in standard preparation.

Socii: medium sized, with round outline

Anellus: about circular in outline, without a distinct bilobed process toward the transtilla.

Transtilla and transtilla lobes: Transtilla strongly broadened in the central part, bulged toward the vinculum, transtilla lobes medium sized, not touching each other but leaving a distinct gap in between, upper parts not overlapping the transtilla.

Phallus: slim (width about 10-12 % of its length), moderately curved in lateral view, tapered to a sharp tip, basal process long (free part about one-third of phallus length), strongly broadened at the end in ventral view (fig. 62 right. Note: basal process appears shorter in ventral than in lateral view, because in lateral view it is perpendicular to photo direction, but not in ventral view).

Male genitalia extremely similar to those of A. angelicella. Only the shape of the transtilla is different: strongly broadened in the middle in A. paraselini sp.n. (figs 62-63) and narrow throughout in A. angelicella (fig. 64). The externally most similar species, A. parilella, has clearly different male genitalia (fig. 65).

Female genitalia (fig. 70)

Anterior margin of sternite VIII rather straight, ostium located in centre of sternite VIII, about circular in outline, representing a very common feature in Agonopterix, not really showing any distinctive structures. Ductus seminialis with 5 ½ to 6 turns. Ductus bursae rather narrow (diameter about the same as the diameter of ostium), with structures common in genus Agonopterix, consisting of a thin membrane without any sclerotisations,densly covered with tiny dots throughout and also with irregular folds, which become weaker or absent near the ostium. Corpus bursae of average size (diameter about two-thirds of the lateral extension of VIII sternite in standard preparation, i.e. dorsoventrally flattened), signum oval, about two times as broad as long, of average size (maximum diameter about 30-40 % of diameter of bursa).
In female genitalia, no diagnostic feature can be found distinguishing *A. paraselini* sp.n. from *A. angelicella*. That could be an argument that they are conspecific, but in the genus *Agonopterix*, female genitalia in general are very similar, and there are further examples of distinct species, not separable by female genitalia. As one example, a slide of *A. parilella* is added, showing female genitalia also nearly indiscernible from those of *A. paraselini* sp.n. (only with difference in the number of turns of the ductus spermathecae: four to four and one half in *A. parilella*), but a look at male genitalia removes any possibility that *A. parilella* could be conspecific with *A. paraselini* sp.n.

Molecular data (neighbour-joining tree see fig. 48)

Barcoded material:

Biology

There are large series of reared specimens, all from *Peucedanum cervaria*. Larvae were collected in May, moth emerged in June and first half of July. In the field, specimens have also been found in midsummer. The fact that even in places where this species is abundant, no moth has been seen in early spring, indicates that it does not overwinter as an adult.

Related species

A. paraselini sp.n. is undoubtedly very closely related to *A. angelicella*. They share the barcode and the genitalia are extremely similar. For this reason it was initially considered to describe *A. paraselini* sp.n. as a subspecies of *A. angelicella*. But the distribution clearly contradicts the fact that they are subspecies. Between subspecies no genetic reproductive barrier exists, and they only persist if there is another barrier in between (like long distance between mountain ranges or islands). But *A. paraselini* sp.n. shares a large area with *A. angelicella*, indicating that reproductive boundaries between them exist which have not yet been recognized.

Etymology

The species name “paraselini” means “beside the selini”, because in all collections this species was found beside (or mixed up with) *Agonopterix selini* specimens.

Distribution

So far known from Austria, France, Germany, Slovenia, Switzerland and Turkey.

Manuscript received on 23.V.2017, accepted on 14.VII.2017.

Acknowledgements

I am most grateful to the following people who have assisted in various ways: First of all Dr Paolo Glerean (MFSN, Udine) for the loan of specimens, which were the key to see the taxonomic problems around among the species hitherto referred to *Agonopterix selini*; for loan of specimens also Dr Martin Lodl and Dr Sabine Gaal-Haszler (NHMV, Vienna), Dr Peter Huemer (TLMF, Innsbruck), Dr Andreas Segerer (ZMS, Munich) and Dr Ole Karsholt (ZMUC). I am particularly grateful to the Canadian Centre for DNA Barcoding (Guelph, Canada), whose sequencing work was enabled by funding from the Government of Canada to Genome Canada through the Ontario Genomics Institute. Furthermore I am also grateful to the Ontario Ministry of Research and Innovation and to NSERC for their support of the BOLD informatics platform, Dr Marko Mutanen (University of Oulu, Finland) for giving access to his barcode data; Dr Sabine Gaal-Haszler, Dr Peter Huemer and Martin Corley for helpful comments on the manuscript, Martin Corley for linguistic editing of the manuscript, and all private collectors mentioned under “Material and methods”.

References

